2014 / 2015 Curriculum - Software Engineering

### First (Fall) Semester	15 credits	Second (Winter) Semester	16 credits
COMP 202	Foundations of Programming (3 cr)	COMP 250	Introduction to Computer Science (3 cr)
MATH 262	Intermediate Calculus (3 cr, P-MATH 141 & MATH 153 or equiv)	ECSE 200	Electric Circuits 1 (3 cr, P-PHYS 142 or CEGEP Equivalent C - MATH 263)
MATH 263	Ord. Differential Eqns. For Engineers (3 cr, C - MATH 262)	ECSE 221	Intro. to Computer Engineering (3 cr, P - COMP 202)
XXXX xxx	Natural Science Complementary 1***	FAC 100	Intro. to the Engineering Profession (1 cr)
XXXX xxx	Humanities & Social Sciences *	MATH 264	Advanced Calculus for Engineers (3 cr, P - MATH 262 or equiv; C - MATH 263)
	MATH 270	Applied Linear Algebra (3 cr, P - MATH 263)	

### Third (Fall) Semester	17 credits	Fourth (Winter) Semester	15 credits
COMP 206	Introduction to Software Systems (2 cr, P - COMP 202 or COMP 250)	COMP 302	Prog. Languages & Paradigms (3 cr, P - COMP 250)
ECSE 291	Electrical Measurements Lab (2 cr, P - COMP 250 or COMP 202)	ECSE 306	Fundamentals of Signals & Systems (3 cr, P - ECSE 210 & MATH 264)
ECSE 211	Design Principles and Methods (3 cr, C - ECSE 291, P - ECSE 200 & COMP 202)	MATH 363	Discrete Mathematics (3 cr, P - MATH 263 & MATH 264)
ECSE 321	Intro. to Software Engineering (3 cr, P - COMP 302 or COMP 206)	XXXX xxx	Impact of Technology on Society **

### Fifth (Fall) Semester	18 credits	Sixth (Winter) Semester	17 credits
COMP 251 | Algorithms and Data Structures (3 cr, P - COMP 202) | COMP 421 | Database Systems (3 cr, P - ECSE 221 & ECSE 200)
ECSE 305 | Probability & Random Signals 1 (3 cr, P - ECSE 303 or ECSE 306) | ECSE 323 | Digital Systems Design (3 cr, P - COMP 250 & COMP 302)
ECSE 414 | Intro. to Telecom Networks (3 cr, P - ECSE 304 or ECSE 305 & ECSE 322) | ECSE 427 | Operating Systems (3 cr, P - ECSE 301 or COMP 320)
ECSE 429 | Software Validation (3 cr, P - ECSE 321 or COMP 320) | ECSE 428 | Software Engineering Practice (3 cr, P - COMP 250 & COMP 302 or COMP 320)
FACC 300 | Engineering Economy (2 cr) | ECSE 456 | ECSE Design Project 1 (3 cr, P - CCOM 206, COMP 302, ECSE 211, ECSE 305, ECSE 312, ECSE 322)
XXXX xxx | Technical Complementary 1 (3 cr) | |

### Seventh (Fall) Semester	16 credits
COMP 360 | Algorithms Design (2 cr, P - COMP 331, MATH 383)
ECSE 420 | Parallel Computing (3 cr, P - ECSE 427)
ECSE 457 | ECSE Design Project 2 (3 cr, P - ECSE 458)
XXXX xxx | Natural Science Complementary 2*** (2 cr)
XXXX xxx | Technical Complementary 2 (2 cr)
FACC 400 | Engineering Professional Practice (1 cr, P - FACC100, 60 program credits)

Courses shown in boldface above must be passed with a grade "C" or better. A "D" is only acceptable in the courses not in boldface. Also, a grade of "C" is required in all prerequisites in order to proceed with the follow-on courses.

Technical Complementary courses are selected from the list given on the next page.

* For instructions on selecting valid “Humanities and Social Sciences” courses, see www.mcgill.ca/ece, then: Programs and Courses > Undergraduate > Complementary Studies.

** For instructions on selecting valid “Impact of Technology on Society” courses, see www.mcgill.ca/ece, then: Programs and Courses > Undergraduate > Complementary Studies.

*** “Natural Science Complementary” courses must be chosen from the list below.

This sample curriculum is for students who wish to complete their degree requirements in 7 semesters. Students may, at any time, deviate from this structure. However, it is the student’s responsibility to devise a study plan that has no course conflicts or prerequisite/corequisite violations. Academic advisors are available for help with course selection.

Revised April 2014
TECHNICAL COMPLEMENTARY COURSES - SOFTWARE ENGINEERING PROGRAM

Technical Complementaries (2 courses) 6-7 credits

Students following the Software Engineering program should take 6-7 credits. It is possible that not all the courses listed will be offered in any given year. Please refer to the up-to-date course assignments before selecting any course. Permission will not be granted to take Technical Complementary courses that are not on this list. ECSE 500 level technical complementaries are restricted to students with a minimum CGPA of 3.0 and B+ or better in the prerequisites.

COMP 330 Theory of Computation (3 cr, P - COMP 251)
COMP 350 Numerical Computing (3 cr, P - MATH 222, MATH 223 & one of COMP 202, COMP 208 or COMP 250 or equiv)
COMP 409 Concurrent Programming (3 cr, P - COMP 251, COMP 302 & COMP 310 or ECSE 427)
COMP 424 Artificial Intelligence (3 cr, P - COMP 206 or ECSE 321, COMP 251)
COMP 520 Compiler Design (4 cr, P - COMP 273 & COMP 302)
COMP 557 Fundamentals of Computer Graphics (3 cr, P - MATH 223, COMP 206 & COMP 251) *
COMP 566 Discrete Optimization 1 (3 cr, P - COMP 360 & MATH 223)
COMP 575 Fundamentals of Distributed Algorithms (3 cr, P - COMP 310)
ECSE 404 Control Systems (3 cr, C - ECSE 304 or ECSE 306)
ECSE 411 Communications Systems 1 (3 cr, P - ECSE 305 & ECSE 304 or ECSE 306)
ECSE 412 Discrete-Time Signal Processing (3 cr, P - ECSE 304 or ECSE 306)
ECSE 413 Communications Systems 2 (3 cr, P - ECSE 411)
ECSE 415 Introduction to Computer Visions (3 cr, P - ECSE 304 or ECSE 306)
ECSE 421 Embedded Systems (3 cr, P - ECSE 322 & ECSE 323)
ECSE 422 Fault Tolerant Computing (3 cr, P - ECSE 322)
ECSE 424 Human-Computer Interaction (3 cr, P - ECSE 322)
ECSE 425 Computer Org. & Architecture (3 cr, P - ECSE 322 & ECSE 323)
ECSE 426 Microprocessor Systems (3 cr, P - ECSE 323 & CCOM 206)
ECSE 504 Sampled Data Control (3 cr, P - ECSE 304 or ECSE 306; C - ECSE 404 or ECSE 501)
ECSE 507 Optimization & Optimal Control (3 cr, P - MATH 264 & MATH 270)
ECSE 523 Speech Communications (3 cr, P - ECSE 412 or ECSE 512)
ECSE 529 Computer and Biological Vision (3 cr, P - ECSE 304 or ECSE 306)
ECSE 530 Logic Synthesis (3 cr, P - ECSE 323)
ECSE 532 Computer Graphics (3 cr, P - ECSE 322) *
ECSE 539 Software Language Engineering (3 cr, P - COMP 303 or COMP 321 or permission of instructor)
ECSE 570 Automatic Speech Recognition (3 cr, P - ECSE 305 and ECSE 322)

* Students may choose either COMP 557 or ECSE 532, not both.

Revised April 2014
NATURAL SCIENCE COMPLEMENTARY COURSES

The following is the list of approved natural science complementary courses.

ATOC 214, Introduction: Physics of the Atmosphere
(3) (Fall) (3 hours lectures) (Prerequisite: CEGEP Physics) An introduction to physical meteorology designed for students in the physical sciences. Topics include: composition of the atmosphere, heat transfer, the upper atmosphere; atmospheric optics; formation of clouds and precipitation; instability; adiabatic charts.

ATOC 215 Oceans, Weather and Climate
(3) (Winter) (3 hours lectures) (Prerequisite: CEGEP Physics or permission of the instructor) Laws of motion, geostrophic wind, gradient wind. General circulation of the atmosphere and oceans, local circulation features. Air-sea interaction, including hurricanes and sea-ice formation, extra-tropical weather systems and fronts, role of the atmosphere and oceans in climate.

EPSC 210 Introductory Mineralogy
(3) (Fall) (2 hours lectures, 3 hours laboratory) Crystal chemistry and identification of the principal rock-forming and ore minerals. Elementary crystallography. Optional 2-day field trip.

ESYS 200 Earth System Processes
(3) (Winter) (3 hours lecture) Complex interactions among the atmosphere, biosphere, geosphere and hydrosphere. Biological, chemical and physical processes within and between each "sphere" that extend over spatial scales ranging from microns to the size of planetary orbits and that span time scales from fractions of a second to billions of years.

MMI 211 Introductory Microbiology
(3) (Fall) (3 hours lecture) (Corequisite: BIOL 200) A general treatment of microbiology bearing specifically on the biological properties of microorganisms. Emphasis will be on procaryotic cells. Basic principles of microbial genetics are also introduced.

PHYS 214 Introductory Astrophysics
(3) (Fall) (Prerequisite: CEGEP physics or PHYS 102 or PHYS 142.) (Restriction: Not open to students who have taken or are taking PHYS 206 or PHYS 206.) An introduction to astrophysics with emphasis placed on methods of observation and current models. Stellar radiation and detectors, quasars, black holes. Galaxies, large scale structure of the universe, cosmology.

PHYS 224 Physics of Music
(3) (Fall) (3 hours lectures) Restriction: Not open to students who have taken PHYS 224. An introduction to the physics of music. Properties of sound and their perception as pitch, loudness, and timbre. Dissonance, consonance, and musical intervals and tuning. Physics of sound propagation and reflection. Resonance. Acoustic properties of pipes, strings, bars, and membranes, and sound production in wind, string, and percussion instruments. The human voice. Room reverberation and acoustics. Directional characteristics of sound sources.

PHYS 235 Dynamics of Simple Systems
(3) (Fall) (3 hours lecture) (Prerequisite: CEGEP physics.) (Corequisite: MATH 222) (Restriction: Not open to students taking or having passed PHYS 251) Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.

PHYS 260 Modern Physics and Relativity
(3) (Fall) (3 hours lectures) (Corequisite: MATH 222) History of special relativity; Lorentz transformations: kinematics and dynamics; transformation of electric and magnetic forces; introduction to topics in modern physics.

CHEM 203 Survey of Physical Chemistry
(3) (Fall) (3 lectures) (Prerequisites: CHEM 110 and CHEM 120 or equivalent.) (Restriction: Intended for students in biological science programs requiring only one course in physical chemistry) (Restriction: Not open to students who have taken or are taking CHEM 204 or CHEM 213) A survey of the principles and methods of physical chemistry with emphasis on the use of biological examples. Topics will include thermodynamics, transport properties, kinetics, molecular structure and interactions, and spectroscopy.

ENVR 200 The Global Environment
(3) (Fall) (Section 001: Downtown Campus) (Section 051: MacDonald Campus) A systems approach to study the different components of the environment involved in global climate change: the atmosphere, biosphere, hydrosphere, and lithosphere. The interactions among these components. Their role in global climate change. The human dimension to global change.

EPSC 201 Understanding Planet Earth
(3) (Fall or Winter) (3 hours lecture) Earth & Planetary Sciences: Learn about Earth's origin, its place in the solar system, its internal structure, rocks and minerals, the formation of metal and fossil fuel deposits, and the extinction of dinosaurs. Discover the impact of the volcanic eruptions, earthquakes and mountain chains on Earth's past, present and future. Explore 125 million-year-old Mount Royal.

EPSC 203 Structural Geology
(3) (Winter) (2 hours lectures, 3 hours laboratory) Primary igneous and sedimentary structures, attitudes of planes and lines, stress and strain, fracturing of rocks, faulting, homogeneous strain, description and classification of folds, foliation and lineation, orthographic and stereographic projections.